

SEN4: Multi-agent and Adaptive Computation

(including the former PNA4)

Han La Poutré

Members 2011

- Tenured researchers
 - Han La Poutré
 - Adaptive multi-agent systems: market mechanisms, computational intelligence
 - Peter Bosman
 - Evolutionary computation, multi-objective optimization
 - Eric Pauwels
 - Semantic sensor networks, image processing
- Temporary researchers
 - 7 Ph.D. student positions (3+4)
 - 2 Postdoc positions (1+1)
- Scientific programmers (2; SEN4,PNA4)

History of SEN4 and PNA4

- PNA4 merged into SEN4 in 2010
 - Independent groups in 2005 2009
 - PNA4:
 - 3 tenured researchers in 2005
 - 2 left PNA4
 - To other group (stochastics); and due to serious illness
 - One remaining researcher: Eric Pauwels

- SEN4:

- 2 tenured researchers in 2005
- 1 moved to other group (life sciences)
- 1 new tenure in 2010: Peter Bosman
 - After postdoc and tenure track 2004-2010
- Techniques of PNA4 converged to those of SEN4

Fundamental Techniques: Design and Analysis

- Decentralized paradigms: multi-agent systems
 - Software agents
 - Economic paradigms (market mechanisms, auctions, negotiation)
 - Adaptive strategies: computational intelligence, heuristic algorithms
 - Sensor agents
 - Extracting semantics from sensor networks
 - Signal processing and computational intelligence techniques
- Computational intelligence techniques (CI)
 - Evolutionary algorithms (EA), reinforcement learning, hybrid heuristics
 - Estimation-of-Distribution Algorithms (EDAs)
 - Multi-agent learning

Key Research: Agents in Markets and Games

- Repeated bidding in markets / economic games
 - Limited information, dynamic environments
 - Market-based control
 - Adaptive agent strategies
 - First-ever approach for risk averse bidders
 - First-ever approach for priced options

- Adaptive negotiation strategies and utility modeling
 - Interdependent negotiation issues
 - Complex
 - Types of opponents/customers
 - First-ever efficient and scalable methods
 - Graphical utility models, online adaptation

Key Research: Black-Box Optimization

- Advanced Evolutionary Algorithms
 - Estimation-of-Distribution Algorithms (EDAs)
 - On-the-fly statistical analysis
 - Optimization with (complex) simulations
 - Robust against many problem features
 - AMaLGaM: ranked world-class

- Dynamic and multi-objective versions
 - Vehicle routing with on-the-fly requests
 - Simulation developed (black box)
 - First EA with dynamic policy optimization
 - Also: on-the-fly learning and prediction
 - Outperforms earlier EAs

Key Research: Sensor Agents and Semantics

- Semantic sensor networks
 - Robust high-level interpretation of sensor data
 - Combination of different sensory modalities
 - Integration of data from various localities with a model
 - Signal processing and computational intelligence techniques
- Image indexing, retrieval, and understanding
 - Generation of content descriptions of images
 - Shape characterization
 - Sensors: cameras

Positioning and Strategy of SEN4: Fundamental, Inspired by Applications

Positioning and Strategy of SEN4: Fundamental, Inspired by Applications

- Enriched fundamental problem models
 - Most-essential additional features
 - E.g. timing constraints
 - Realistic (multiple) objectives
 - Uncertainty: limited information
 - Repetition
 - Dynamics
- Additional goal
 - Robustness of approaches
 - Against several detailed problem features
- Projects
 - Multidisciplinary
 - VOS Logistics, APM Terminals, AMC, KEMA, Enexis/Essent
 - SEN3, INS3, MAC1, MAC2, PNA1, PNA2
 - Universities, Lifewatch

Problem Domains: Computational Sustainability

- Decentralized and adaptive logistics
 - Transportation (market-based control)
 - Health care (adaptive)

- Sensing and semantics
 - Novelty detection (calamities, energy)

New Challenging Problem Domain: Smart Energy Systems (SES)

- Started with first interest in energy 4 years ago
 - Preparation, domain knowledge, and networking
- Now:
 - 5 Ph.D. and 1 postdoc position
 - Involvement in networks
 - NWO SES committees
 - EIT ICT Labs: SES core team

- Perfect match with the techniques of SEN4
 - "Killer application" for multi-agent systems
 - Decentral, dynamic, uncertain, multi-objective
 - Demanded by the energy field/experts
 - New challenging problems in CS

Scientific Challenges

- Goal 1: Fundamental development of techniques themselves
 - See above
- Goal 2: Models and techniques for the smart energy domain
 - Smart grids
 - Energy supply/demand matching (markets)
 - Capacity planning
 - Network state determination
 - Energy in Smart Buildings
 - Detection of usage and generation
 - Online optimization of usage and generation
 - Relevant techniques
 - Agent systems, sensor agents, agent-based simulation, markets
 - CI, black-box optimization, multiple objectives

SWOT

Strengths

- Publications in high-quality forums
- Fundamental research with societal relevance
 - With societal institutions, companies, and academia
 - Multidisciplinary projects
- Increasing roles in networks and science policy

Weaknesses

- Reduction of former PNA4 group in size
- Difficulties with funding for health care logistics with ICT
 - More eye-catching areas: telemedicine, EPR

SWOT

Opportunities

- New important application area "Smart Energy Systems"
 - Fits very well the expertise of SEN4
- Combination of sensor systems and adaptive techniques

Threats

- Acquisition of high-quality Ph.D. students
 - Fundamental research inspired by applications
 - Competition with companies
- Decrease in funding for ICT research by the government

Conclusion

- High-quality publications and results
- Research together with other domains and companies
- Well-positioned for the future: smart energy systems
- Good mix of tenured researchers
- Increasing roles in scientific networks and policy

